Bedienungsanleitung für 3-Phasen 1Q-Stromrichter Temvar GDE2

INHALTSVERZEICHNIS

1	SICHERHEITS- UND ANWENDUNGSHINWEISE FÜR ANTRIEBSSTROMRICHTER	2
2	GERÄTEBESCHREIBUNG	3
	2.1 Allgemeines	3
	2.2 Geräteaufbau	3
	2.3 Umgebungsbedingungen	
	2.4 Netzverhältnisse	
3	PRODUKTÜBERSICHT	6
	3.1 Gerätetabelle	
	3.2 Maße Drosseln und Geräte	7
4	GERÄTEANSCHLUSS	8
	4.1 Anschlussplan	
	4.2 Ein/Ausschalt-Reihenfolge	8
	4.3 Klemmenbelegung	9
	4.4 Montage	
	4.4.1 Gefahrenhinweis	
	4.4.2 Mechanischer Aufbau	
	4.4.3 Verdrahtungshinweise	
5	ÜBERSICHTSPLÄNE	
	5.1 Stromlaufplan	
	5.2 Gerätebestückung	
	5.3 Bestückungsplan Elektronik-Platinen	
	5.4 Potentiometereinstellungen	
	5.5 LED-Anzeigen	
	FUNKTIONSBESCHREIBUNG DER EIN- UND AUSGÄNGE	
	6.1 Analoge Eingänge	
	6.2 Analoge Ausgänge	
	6.3 Steuereingänge und Meldeausgänge	
	FUNKTIONSBESCHREIBUNG	
	7.1 Sollwertintegrator	
	7.2 Drehzahlregler	
	7.3 Stromgrenze	
	7.4 Stromregler	
	7.5 Zündimpulsbildung	
	7.6 Thyristor-Endstufen7.7 Elektronikversorgung	
	7.7 Elektronikversorgung	
	7.9 Netzüberwachung	
	7.3 Netzüberwachung	
	7.10 Facriouserwachung	
	•	
	INBETRIEBNAHME	
	8.2 Empfohlene Vorgehensweise	
	· · ·	
	OPTIMIERUNG	
10	STÖRUNGSFALL	31

Stand: A0127_07 - Datum: 08. Juli 2009/KB

E-Mail: elektronik@atrie.de

D 96.091101

1 SICHERHEITS- UND ANWENDUNGSHINWEISE FÜR ANTRIEBSSTROMRICHTER

(gemäß Niederspannungsrichtlinie 73/23/EWG)

25.10.96/HX/PT/BLY

1. Allgemein

Während des Betriebes können Antriebsstromrichter ihrer Schutzart entsprechend spannungsführende, blanke, gegebenenfalls auch bewegliche oder rotierende Teile, sowie heiße Oberflächen besitzen.

Bei unzulässigem Entfernen der erforderlichen Abdeckung, bei unsachgemäßem Einsatz, bei falscher Installation oder Bedienung, besteht die Gefahr von schweren Personen- oder Sachschäden.

Weitere Informationen sind der Dokumentation zu entnehmen.

Alle Arbeiten zum Transport, zur Installation und Inbetriebnahme sowie zur Instandhaltung sind von **qualifiziertem Fachpersonal** auszuführen (IEC 364 bzw. DIN VDE 0100 und nationale Unfallverhütungsvorschriften beachten).

Elektrofachkraft

Person, welche auf Grund Ihrer fachlichen Ausbildung, Kenntnisse und Erfahrungen sowie Kenntnis der einschlägigen Normen die ihr übertragenen Aufgaben beurteilen und mögliche Gefahren erkennen kann.

Elektrotechnisch unterwiesene Person

Person, welche durch eine Elektrofachkraft über die ihr übertragenen Aufgaben und die möglichen Gefahren bei unsachgemäßem Verhalten unterrichtet und erforderlichenfalls angelernt sowie über die notwendigen Schutzeinrichtungen und Schutzmaßnahmen belehrt wurde.

2. Bestimmungsgemäße Verwendung

Antriebsstromrichter sind Komponenten, die zum Einbau in elektrische Anlagen oder Maschinen bestimmt sind.

Bei Einbau in Maschinen ist die Inbetriebnahme der Antriebsstromrichter (d. h. die Aufnahme des bestimmungsmäßigen Betriebes) solange untersagt, bis festgestelt wurde, dass die Maschine den Bestimmungen der EG-Richtlinie 93/44/EWG (Maschinenrichtlinie) entspricht; EN 60204 ist zu beachten.

Die Inbetriebnahme (d.h. die Aufnahme des bestimmungsgemäßen Betriebes) ist nur bei Einhaltung der EMV-Richtlinie (89/336/EWG) erlaubt.

Die Antriebsstromrichter erfüllen die Anforderungen der Niederspannungsrichtlinie 73/23/EWG. Die harmonisierten Normen der Reihe prEN 50178/DIN VDE 0160 in Verbindung mit EN 60439-1/VDE 0660 Teil 500 und EN 60146/VDE 0558 werden für die Antriebsstromrichter angewendet.

Die technischen Daten sowie die Angaben zu Anschlussbedingungen sind dem Leistungsschild und der Dokumentation zu entnehmen und unbedingt einzuhalten.

3. Transport, Einlagerung

Die Hinweise für Transport, Lagerung und sachgemäße Handhabung sind zu beachten.

Klimatische Bedingungen sind entsprechend prEN 50178 einzuhalten

4. Aufstellung

Die Aufstellung und Kühlung der Geräte muss entsprechend den Vorschriften der zugehörigen Dokumentation erfolgen.

Die Antriebsstromrichter sind vor unzulässiger Beanspruchung zu schützen. Insbesondere dürfen bei Transport und Handhabung keine Bauelemente verbogen und/oder Isolationsabstände verändert werden. Die Berührung elektronischer Bauelemente und Kontakte ist zu vermeiden.

Antriebsstromrichter enthalten elektrostatisch gefährdete Bauelemente, die leicht durch unsachgemäße Behandlung beschädigt werden können. Elektrische Komponenten dürfen nicht mechanisch beschädigt oder zerstört werden (unter Umständen Gesundheitsgefährdung!).

5. Elektrischer Anschluss

Bei Arbeiten an unter Spannung stehenden Antriebsstromrichtern sind die geltenden nationalen Unfallverhütungsvorschriften (z. B. VBG4) zu beachten.

Die elektrische Installation ist nach den einschlägigen Vorschriften durchzuführen (z. B. Leitungsquerschnitte, Absicherungen, Schutzleiteranbindung). Darüberhinausgehende Hinweise sind in der Dokumentation enthalten.

Hinweise für die EMV-gerechte Installation - wie Schirmung, Erdung, Anordnung von Filtern und Verlegung der Leitungen befinden sich in der Dokumentation der Antriebsstromrichter. Diese Hinweise sind auch bei CE-gekennzeichneten Antriebsstromrichtern stets zu beachten. Die Einhaltung der durch die EMV-Gesetzgebung geforderten Grenzwerte liegt in der Verantwortung des Herstellers der Anlage oder Maschine.

6. Betrieb

Anlagen, in die Antriebsstromrichter eingebaut sind, müssen ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen gemäß den jeweils gültigen Sicherheitsbestimmungen, z.B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften usw. ausgerüstet werden. Veränderungen der Antriebsstromrichter mit der Bediensoftware sind gestattet.

Nach dem Trennen der Antriebsstromrichter von der Versorgungsspannung dürfen spannungsführende Geräteteile und Leistungsanschlüsse wegen möglicherweise aufgeladener Kondensatoren nicht sofort berührt werden.

Hierzu sind alle die entsprechenden Hinweisschilder auf dem Antriebsstromrichter zu beachten.

Während des Betriebes sind alle Abdeckungen und Türen geschlossen zu halten.

2

7. Wartung und Instandhaltung

Die Dokumentation des Herstellers ist zu beachten.

Diese Sicherheitshinweise sind aufzubewahren!

2 GERÄTEBESCHREIBUNG

2.1 Allgemeines

Die Dreiphasen-Gleichstromsteller der Baureihe GDE sind Kompaktgeräte zur Ankerspeisung drehzahl-geregelter Gleichstromantriebe bis 700 A.

Das Gerätekonzept zeichnet sich durch die kompakte Bauweise aus.

Durch das geschlossene, verzinkte Gehäuse und die durchdachte Klemmenanordnung wird ein EMV-gerechter Aufbau (s. Kapitel 4) sehr unterstützt.

Der Hauptstrom-Anschluss überstreicht den Bereich von 210 bis 550 V ohne jede Umschaltmaßnahme

Die Elektronikversorgung beträgt bei allen Geräten 230 V 50/60 Hz. Eine Synchronisierung der Elektronikversorgung mit dem Hauptstrom ist nicht erforderlich.

Aus der Typenangabe lassen sich die wesentlichen Eigenschaften des Gerätes herauslesen, z. B.

2.2 Geräteaufbau

Der Leistungsteil besteht aus einer kreisstromfreien Thyristorbrücke in üblicher Modultechnik. Die Versorgungsanschlüsse X3 sind an der Oberseite, die Ausgänge und Elektronikanschlüsse X4 und X1 an der Unterseite der Geräte angeordnet. Die Elektronik besteht aus einer Regler- und einer Steuerplatine, sowie einer Versorgungsbaugruppe.

2.2.1 Reglerplatine GDE2 A0114xx

Sie ist durch Abschrauben der oberen Blechverkleidung zu erreichen. Hier sind die Elektronikklemmen X1 (Soll- und Istwerte, Freigabe und Meldeausgänge) und X2 (Potentialklemmen und Hilfseingänge) plaziert, sowie alles was zu Inbetriebnahme notwendig ist (Potis, Bestückungsplätze, LED-Meldungen). Auf dieser Platine befinden sich folgende Schaltungsgruppen.:

- A) Sollwertintegrator
- B) Drehzahlistwertanpassung
- C) Drehzahlregler mit Strombegrenzung
- D) Stromregler
- E) Meldeausgänge für Drehzahl > 0, Stromgrenze erreicht, Feldstrom > 0 und Gerät betriebsbereit.

2.2.2 Steuerplatine GDE2 A0095xx

Sie ist an der linken Seitenwand montiert. Auf dieser Platine sind folgende Schaltungsgruppen untergebracht.

- A) Umschaltlogik
- B) Stromerfassung
- C) Gleich- und Wechselrichterbegrenzung
- D) Zündimpulserzeugung
- E) Ein- Ausschaltlogik bei Netzausfall
- F) Zündimpulsendstufen

2.2.3 Versorgungsbaugruppe

Geräte 15 A - 270 A GDE2 A0033<u>xx</u> Geräte 380 A - 700 A GDE2 A0112<u>xx</u>

Bei den Geräten bis 270 A ist diese Baugruppe an der rechten Seitenwand montiert. Auf der Baugruppe (A0033xx) sind folgende Schaltungsgruppen.

- A) Elektronikversorgung mit den Feinsicherungen F1 F4 (s. Stromlaufplan Seite 12)
- B) Feldstromüberwachung
- C) Synchronspannungserzeugung
- D) Netzüberwachung
- E) Temperaturüberwachung
- F) Ankerspannungserfassung
- G) Überspannungsschutzschaltung mit TSE Beschaltung für die Thyristoren

Bei den Geräten ab 380 A ist die Baugruppe (A0112xx) unter dem klappbaren Deckel unter-gebracht. Die Überspannungsschutzschaltung mit TSE - Beschaltung ist auf einer separaten Platine unmittelbar über den Thyristoren angebracht.

Die wesentlichen Elemente wie die 60 Hz-Brücke und Feinsicherungen für die Elektronikversorgung sind durch hochklappen der Reglerplatine erreichbar. Ansonsten gibt es auf diesen Platinen nichts, was bei einer Inbetriebnahme zu justieren wäre.

Gefahrenhinweis

Dieses Gerät steht unter gefährlicher Spannung, auch wenn das Netzschütz des Stromrichtergerätes geöffnet ist. Die Steuerbaugruppe und Versorgungsbaugruppen enthalten viele unter gefährlicher Spannung stehende Stromkreise.

Die Nichteinhaltung der in dieser Betriebsanleitung aufgeführten Anweisungen kann zum Tod, zu schweren Körperverletzungen und Sachschäden führen.

2.3 Umgebungsbedingungen

Die angegebenen Gerätenennströme gelten bei einer maximalen Umgebungstemperatur von 40℃. Darüber ist eine Reduzierung des Gerätene nnstromes von 1% pro℃ zu berücksichtigen. Die absolute Grenztemperatur ist 55℃. E in Wärmestau über den Geräten ist zu vermeiden. Die Geräte haben die Schutzart IP 00, sind also in geschlossenen Schaltschränken oder abgeschlossenen Schalthäusern einzubauen.

Die Umgebungsluft muss frei von elektrisch leitenden Staubpartikeln und chemisch aggressiven Dämpfen sein. Vibrationen können die Geräte zerstören.

2.4 Netzverhältnisse

Die Geräte arbeiten in einem Spannungsbereich von 230 bis 500 V \pm 10%/50 Hz. Für den Betrieb an 60 Hz-Netzen muss die Brücke JP2 auf der Steuerplatine gesteckt werden. Die Meldung "Betriebsbereit" steht 200 ms nach eingeschalteter Elektronikversorgung an, vorausgesetzt der Hauptstrom ist eingeschaltet. Die Reglerfreigabe ist nur an betriebsbereitem Gerät möglich.

Die Geräte benötigen ein Netz mit $U_K = 4\%$ bei Gerätenennstrom. Das wird durch Vorschalten der empfohlenen Kommutierungsdrosseln DD15-700 erreicht.

Für die Elektronik- und Lüfterversorgung wird grundsätzlich eine Hilfsspannung von 230 V ±10%, 50/60 Hz benötigt

<u>Achtung:</u> Die Stromrichter sind nicht für den Betrieb an erdfreien Netzen (IT-Netze) geeignet. Bitte fragen Sie bei Bedarf nach einer kundenspezifischen Ausführung.

3 PRODUKTÜBERSICHT

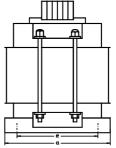
3.1 Gerätetabelle

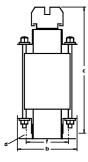
Тур			Ausgangs- Strom	Verlust- Leistung	Stromaufn. Elektronik	Eingangs- Drossel	
GDE2/15 GDE2/30 GDE2/60 GDE2/90 GDE2/130 GDE2/190 GDE2/270 GDE2/380 GDE2/500 GDE2/700	12 A 25 A 49 A 74 A 107 A 156 A 221 A 312 A 410 A	16 A 35 A 63 A 80 A 125 A 160 A 250 A 400 A 450 A	15 A 30 A 60 A 90 A 130 A 190 A 270 A 380 A 500 A	150 W 200 W 300 W 320 W 350 W 630 W 760 W 1100 W	0,2 A 0,2 A 0,2 A 0,2 A 0,6 A 0,6 A 0,6 A 1 A	DD 15 DD 30 DD 60 DD 90 DD130 DD190 DD270 DD380 DD500	
GDE2/700	574 A	630 A	700 A	2000 W	1 A	DD700	

Gemeinsame Daten:

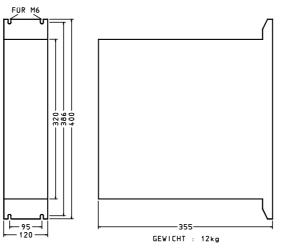
Anschlussspannung Hauptstrom : 207 - 550 V / D 230 - 500 V \pm 10% Anschlussspannung Elektronik : 207 - 253 V / 0,2 A E 230 V \pm 10%

Anschlussspannung Feldversorgung : max. 400 V / E 400 V max.

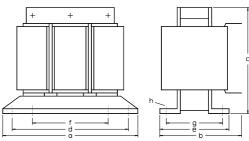

Frequenz der Versorgungsspannungen: 48 - 63 Hz

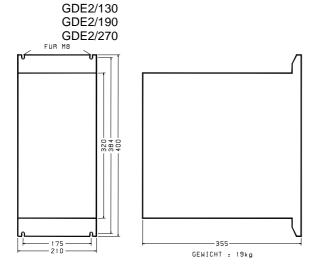

Ausgang Feldversorgung : 0,9 x UE / DC / max. 7 A ab GDE2/130 : 0,9 x UE / DC / max. 15 A

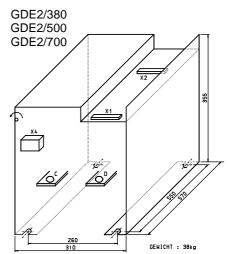
3.2 Maße Drosseln und Geräte


Für Geräte 15 - 90 A

Тур	Nenn- Wechselstrom	а	b	С	d	е	f
DD15	12 A	123	70	125	4,8	123	49
DD30	24 A	153	74,5	150	4,8	153	54,5
DD60	48 A	180	100,5	175	7,0	180	70,5
DD90	72 A	180	120	175	7,0	180	90

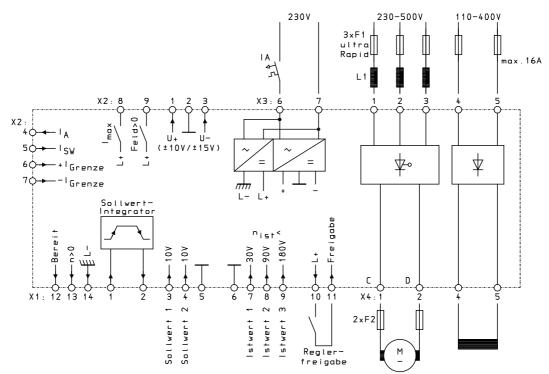



GDE2-15 GDE2-30 GDE2-60 GDE2-90



Für Geräte 130 - 700A

Тур	Nenn- Wechselstrom	а	b	С	d	е	f	g	h
DD130	160 A	219	150	160	201	115,5	136	90,5	7x12
DD190	160 A	267	170	200	249	133	176	103	7x12
DD270	315 A	316	195	235	292	138	200	98	10x16
DD380	315 A	316	200	235	292	152	200	112	10x16
DD500	500 A	316	215	235	292	164	200	124	10x16
DD700	630 A	352	230	270	328	184	224	144	10x16



4 GERÄTEANSCHLUSS

4.1 Anschlussplan

Gefahrenhinweis

Falscher Anschluss des Gerätes kann zu Beschädigung oder Zerstörung führen.

4.2 Ein/Ausschalt-Reihenfolge

Einschalten

- 1. Feldversorgung X3: 4 + 5
- 2. Elektronikversorgung X3: 6 + 7
- 3. Hauptstrom X3: 1 + 2 + 3
- 4. Reglerfreigabe X1: 10 + 11
- Sollwert X1: 1 oder 3 oder 4

Punkt 2 bis Punkt 5 dürfen zusammen geschaltet werden, da das Gerät eine interne Sperre von ca. 200 ms nach Einschalten der Elektronikversorgung besitzt. Die Bereitmeldung steht allerdings auch erst nach dieser Zeit sicher an.

Punkt 1 muss mindestens 1 Sekunde früher als Punkt 3 eingeschaltet sein.

Die Elektronikversorgung kann auch konstant anliegen, sie muss nicht mit dem Antrieb einund ausgeschaltet werden.

Ausschalten

- 1.) Sollwert X1: 1 oder 3 oder 4
- 2.) Reglerfreigabe X1: 10 + 11
- 3.) Hauptstrom X3: 1 + 2 + 3
- 4.) Feldversorgung X3: 4 + 5
- 5.) Elektronikversorgung

Punkt 1 und 2 dürfen gemeinsam geschaltet werden.

Punkt 3 bis 5 können gemeinsam geschaltet werden, aber in jedem Fall nach Punkt 2.

Die Elektronikversorgung muss nicht abgeschaltet werden. Der Motor ist ganz sicher spannungsfrei, wenn Punkt 1 - 4 abgeschaltet sind.

4.3 Klemmenbelegung

X1: Elektronik-Steckklemme 14-pol.

- 1 Eingang Sollwertintegrator max. + 10 V. Eingangswiderstand 100 K.
- 2 Ausgang Sollwertintegrator max. + 10 V. Ausgangswiderstand 44 Ohm.
- 3 Sollwerteingang max. + 10 V. Eingangswiderstand 44 K. Filterzeitkonstante 22 ms.
- 4 Sollwerteingang max. + 10 V. Eingangswiderstand 44 K. Filterkonstante 22 ms.
- 5 Reglermasse
- 6 Reglermasse
- 7 Istwerteingang max. 30 V. Eingangswiderstand 12 K.
- 8 Istwerteingang max. 90 V. Eingangswiderstand 30 K.
- 9 Istwerteingang max. 180 V. Eingangswiderstand 48 K.
- 10 L+, potentialfreie Hilfsspannung + 24 V für Reglerfreigabe, Meldeausgänge und Hilfselektronik. Belastbar max. 50 mA.
- 11 Eingang Reglerfreigabe über Optokoppler + 18 bis 30 V entspricht, > 12,5 V entspricht Reglerfreigabe. Eingangswiderstand 3K3.
- 12 Ausgang Bereitmeldung. + 24 V entspricht Gerät betriebsbereit. Max. Belastbarkeit 20 mA.
- 13 Ausgang Laufmeldung. + 24 V entspricht "Antrieb dreht". Max. Belastbarkeit 20 mA.
- 14 L-, Bezugspunkt der potentialfreien Hilfsspannung 24 V für Reglerfreigabe, Meldeausgänge und Hilfselektronik. Belastbar 50 mA.

X2: Elektronik-Steckklemme 9pol.

- 1 Ausgang + 15V oder + 10 V stabilisiert für Hilfselektronik und Sollwertbildung.
 Belastbar max. 30 mA. Die Spannung kann über den Jumper (+15/+10) bestimmt werden.
- 2 Reglermasse
- Ausgang 15V oder 10 V stabilisiert für Hilfselektronik und Sollwertbildung.

 Belastbar max. 30 mA. Die Spannung kann über den Jumper (-15/-10) bestimmt werden.

- 4 Ausgang Stromistwert. Gerätenennstrom entspricht + 10 V. Ausgangswiderstand 220 Ohm.
- 5 Zusatzeingang zum Stromregler. + 10 V entspricht 100% Stromsollwert. Eingangswiderstand 44 K. Filterzeitkonstante 2,2 ms.
- Eingang für externe Stromgrenzeneinstellung + oder 10 V entspricht 100% (R5 Rechtsanschlag) Stromgrenze bei positivem Drehzahl-Sollwert und Treibbetrieb. Eingangswiderstand 4K7.
- Fingang für externe Stromgrenzeneinstellung beim 4Q-Gerät (R6 Linksanschlag). Eingangswiderstand 4K7.
- 8 Meldeausgang "Stromgrenze" . + 24 V entspricht Gerät an der Stromgrenze. Max. Belastbarkeit 20 mA.
- 9 Meldeausgang "Feldstrom vorhanden". + 24 V entspricht Feldstrom größer als 0,2 A. Bei den Geräten ab 130 A Feldstrom größer als 0,4 A. Max. Belastbarkeit 20 mA.

Hauptstromanschlüsse X3 + X4

	Hauptstrom- versorgung X3: 1 + 2 + 3	Feldver- sorgung X3: 4 + 5	Elektronik- versorgung X3: 6 + 7	Anker- anschluss X4: 1 + 2	Feld- anschluss X4: 4 + 5	
GDE2-15	4 ² *	2,5 ² *	2,5 ² *	4 ² *	2,5 ² *	
GDE2-30	4 ² *	2,5 ² *	2,5 ² *	4 ² *	2,52 *	
GDE2-60	16 ² *	2,5 ² *	2,5 ² *	16 ² *	2,5 ² *	
GDE2-90	16 ² *	2,5 ² *	2,5 ² *	35 ² *	2,5 ² *	
GDE2-13	20 x 3/M8 **	4 ² *	2,5 ² *	20 x 5/M8 **	4 ² *	
GDE2-19	20 x 3/M8 **	4 ² *	2,5 ² *	20 x 5/M8 **	4 ² *	
GDE2-270	20 x 5/M8 **	4 ² *	2,5 ² *	20 x 5/M8 **	4 ² *	
GDE2-380	40 x 5/M10 **	4 ² *	2,5 ² *	40 x 5/M10 **	4 ² *	
GDE2-500	40 x 5/M10 **	4 ² *	2,5 ² *	40 x 5/M10 **	4 ² *	
GDE2-700	40 x 5/M10 **	4 ² *	2,52 *	40 x 5/M10 **	4 ² *	

^{* =} Reihenklemmen

^{** =} Stromschienen

4.4 Montage

4.4.1

Gefahrenhinweis

Unsachgemäßes Heben kann zu Körperverletzung oder Sachschaden führen.

Das Gerät nur mit der geeigneten Ausrüstung und unter Einsatz entsprechend qualifiziertem Personals heben.

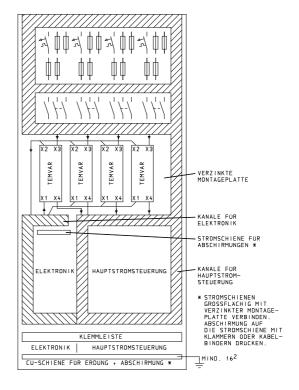
Die Montage des Gerätes muss in Übereinstimmung mit den Sicherheitsvorschriften (z. B. DIN, VDE) sowie allen anderen relevanten staatlich oder örtlichen Vorschriften erfolgen. Es muss für ordnungsgemäße Erdung, Leiterdimensionierung und entsprechenden Kurzschluss-Schutz gesorgt sein, um die Betriebssicherheit zu gewährleisten.

4.4.2 Mechanischer Aufbau

Die Geräte haben aus EMV-Gründen ein verzinktes Stahlblechgehäuse. Aus dem gleichen Grund empfiehlt es sich, eine verzinkte Montageplatte zu verwenden und den Erdanschluss auf eine Kupferschiene zu legen, die großflächig leitend mit der Platte verbunden wird (s. Aufbauvorschlag).

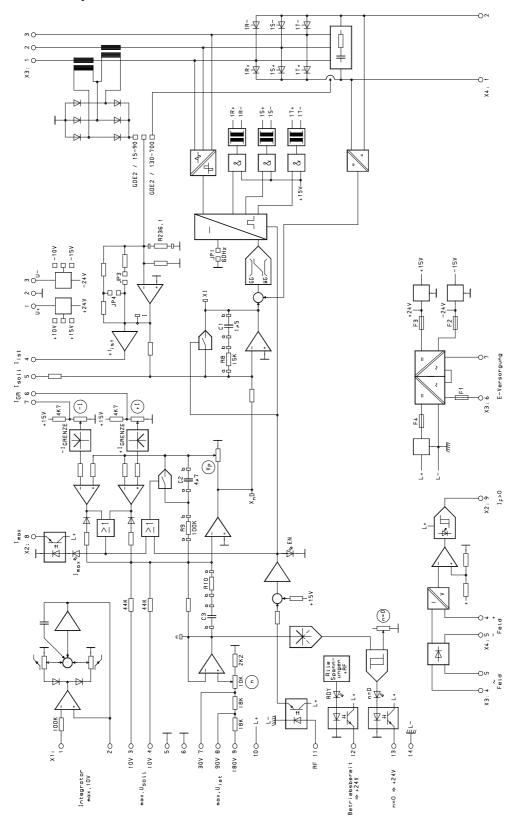
Um einen ungehinderten Kühlluftzutritt- und austritt sicherzustellen, müssen ober- und unterhalb des Gerätes mindestens 100 mm Abstand freigehalten werden.

Bei Nichtbeachtung besteht die Gefahr einer Geräteüberhitzung!


Die Hauptstromsicherungen müssen ultra-flinke Halbleitersicherungen sein.

4.4.3 Verdrahtungshinweise

Sämtliche Leitungen, die an den Klemmleisten X1 und X2 angeschlossen werden, müssen abgeschirmt sein. Die Abschirmung wird großflächig auf die dafür vorgesehenen Stromschienen mit Klemmen, Schellen oder Kabelbindern gedrückt.


Leitungen mit analogen Signalen sollen nur einseitig geerdet, Leitungen mit binären Steuersignalen können an mehreren Punkten geerdet werden. Die Kabelwege sollen kurz gehalten und die Elektronikverdrahtung streng von der Hauptstromverdrahtung getrennt werden (s. Aufbauvorschlag).

Die Reglermasse soll durch eine kurze, 2,5² - Litze mit dem Schutzleitersystem verbunden werden.

5 ÜBERSICHTSPLÄNE

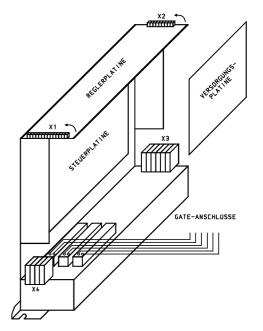
5.1 Stromlaufplan

5.2 Gerätebestückung

Thyristormodule:

x MCC 19-16io8B
x MCC 19-16io8B
x MCC 44-16io8B
x MCC 44-16io8B

Die Feinsicherungen für die Elektronikversorgung befinden sich auf der Versorgungsbaugruppe.


Diese Baugruppe ist erreichbar, wenn die Reglerplatine in Pfeilrichtung weggeklappt wird.

X1: Elektronikklemmleiste Hauptfunktion

X2: Elektronikklemmleiste Hilfsfunktion

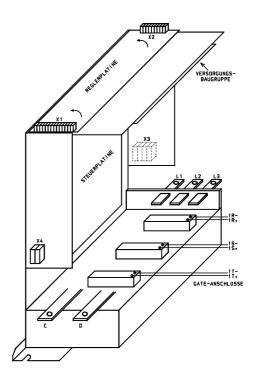
X3: Eingangsklemmen Hauptstrom

X4: Ausgangsklemmen Hauptstrom

Thyristormodule:

GDE2-130	3 x MCC 95-16io8B
GDE2-190	3 x MCC 95-16io8B
GDE2-270	3 x MCC 132-16io8B

Die Feinsicherungen für die Elektronikversorgung befinden sich auf der Versorgungsbaugruppe.


Diese Baugruppe ist erreichbar, wenn die Reglerplatine in Pfeilrichtung weggeklappt wird.

X1: Elektronikklemmleiste Hauptfunktion

X2: Elektronikklemmleiste Hilfsfunktion

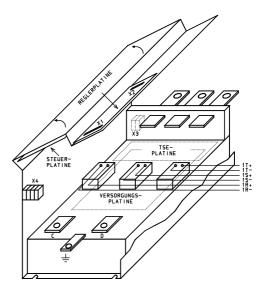
X3: Eingang Hauptstrom

X4: Ausgang Hauptstrom

Thyristormodule:

GDE2-380 3 x MCC 170-16io8B GDE2-500 3 x MCC 255-16io8B GDE2-700 6 x MCC 312-16io8B

Die Feinsicherungen für die Elektronikversorgung befinden sich auf der Versorgungsbaugruppe.

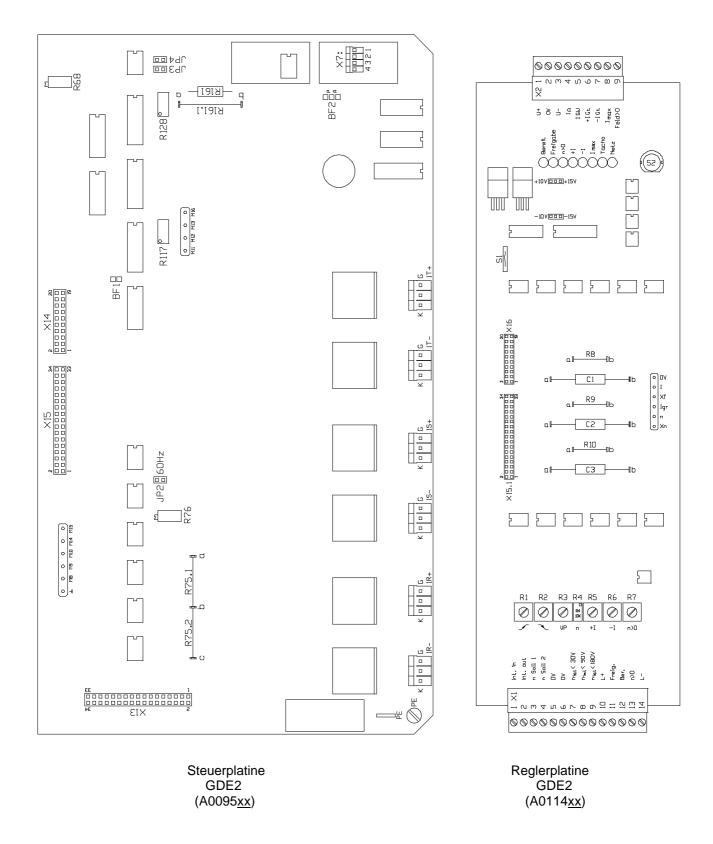

Diese Baugruppe ist erreichbar, wenn die Reglerplatine in Pfeilrichtung weggeklappt wird.

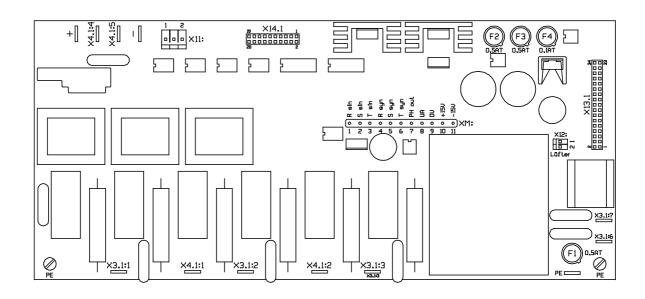
X1: Elektronikklemmleiste Hauptfunktion

X2: Elektronikklemmleiste Hilfsfunktion

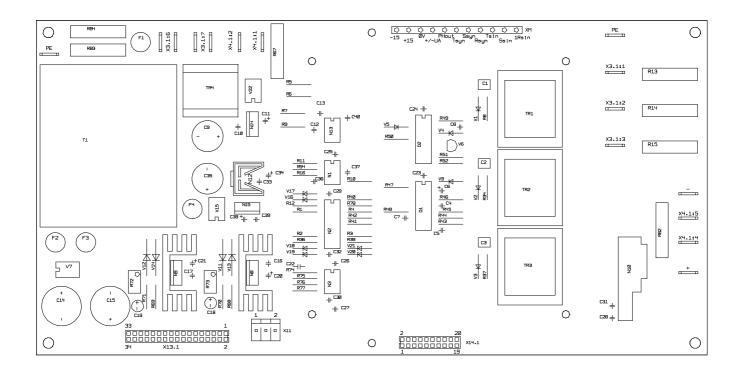
X3: Eingang Hauptstrom

X4: Ausgang Hauptstrom

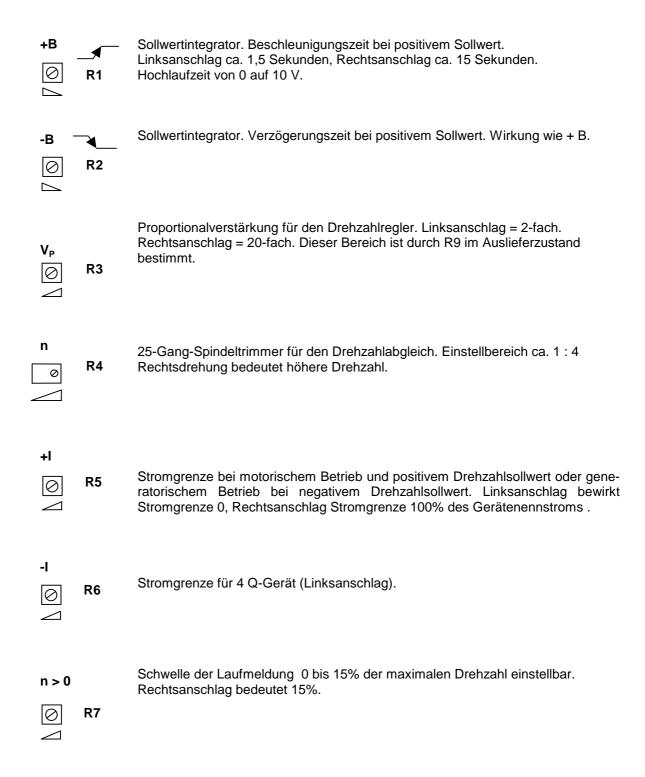



Gefahrenhinweis

Dieses Gerät steht unter gefährlicher Spannung, auch wenn das Netzschütz des Stromrichtergerätes geöffnet ist. Die Steuerbaugruppe enthält viele unter gefährlicher Spannung stehende Stromkreise.


Die Nichteinhaltung der in dieser Betriebsanleitung aufgeführten Anweisungen kann zum Tod, schweren Körperverletzungen und Sachschäden führen.

5.3 Bestückungsplan Elektronik-Platinen


VERSORGUNGSPLATINE Bei Geräten bis 270 A

VERSORGUNGSBAUGRUPPE Bei Geräten ab 380A

5.4 Potentiometereinstellungen

5.5 LED-Anzeigen

BEREIT

 \otimes

LED leuchtet, wenn alle internen Elektronikspannungen in Ordnung sind und der Hauptstrom eingeschaltet ist und keine Tachostörung vorliegt.

REGLERFREIGABE

 \otimes

LED leuchtet, wenn das Gerät bereit ist und der Regler an Klemme 11 durch + 24 V-Signal freigegeben wurde.

n > o

8

LED leuchtet, wenn der Antrieb schneller als die am Poti n > 0 eingestellte Schwelle dreht.

Stromrichtung "+"

LED zeigt den 1Q-Betrieb an.

Stromrichtung "-"

Diese Meldung ist nur beim 4 Q-Gerät in Betrieb.

Stromgrenze

LED leuchtet, wenn der Motor mindestens 15 Sekunden an der eingestellten Stromgrenze betrieben wird, dass heißt, der Drehzahlregler am Anschlag betrieben wird, der mit dem Poti +I eingestellt ist.

Tacho

LED leuchtet, wenn die Tachospannung nicht im vorgegebenen Verhältnis zur Ankerspannung steht. Diese Meldung sperrt das Gerät und schaltet die Bereitmeldung ab.

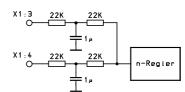
Netz

LED leuchtet, wenn der Hauptstrom nicht mit Rechtsdrehfeld, Phasenausfall oder beim Kühlkörper Übertemperatur vorliegt.

6 FUNKTIONSBESCHREIBUNG DER EIN- UND AUSGÄNGE

6.1 Analoge Eingänge

Die analogen Eingänge dürfen nur mit abgeschirmten Leitungen angeschlossen werden. Der Schirm ist nur einmal in Gerätenähe großflächig auf das Erdungssystem anzuschließen. Diese Leitungen dürfen aus EMV-Gründen nie offen betrieben werden, beim Abschalten müssen sie gegen Elektronikmasse abgeschlossen werden.

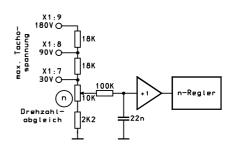

Sollwertintegrator

Der Eingangsspannungsbereich beträgt 0 bis + 10 V.

X1:1 22K 22K +B -B

Sollwerteingänge

Die beiden Eingänge sind gleichberechtigt und addierend. Der maximale Eingangsspannungsbereich beträgt 0 bis + 10 V. Eingangswiderstand und Filterzeitkonstante sind jeweils 44 K-Ohm und 22 ms.

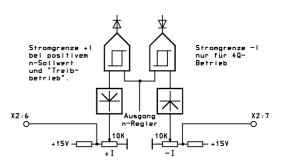


Istwerteingänge

Das Potentiometer "Drehzahlabgleich" ist ein 25-Gang Spindeltrimmer mit einem Einstellbereich von ca. n = 4.

Rechtsanschlag bedeutet höchste Drehzahl.

Die Filterzeitkonstante ist mit ca. 2,2 ms aus dynamischen Gründen sehr klein gewählt, die Tachospannung muss daher sehr sauber sein.

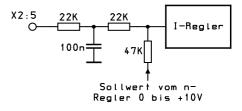

Eingänge "externe Stromgrenze"

Mit dem Poti +I wird der maximale Motorstrom eingestellt (Rechtsanschlag 100% Gerätenennstrom). Eine externe Spannung von 0 bis 10 V an X2: 6 bedeutet 0 bis 100% Motorstrom.

Der Eingang ist mit einem aktiven Gleichrichter versehen und kann deshalb + 10 V oder - 10 V verarbeiten (Eingangswiderstand 4K7).

Die eingestellte Stromgrenze kann auch durch zuschalten eines Widerstandes gegen Masse verkleinert werden.

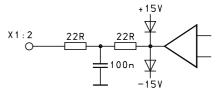
Die negative Stromgrenze gibt es nur beim 4 Q-Gerät. Bei diesem Gerät steht das Poti -I auf Links-anschlag.



Zusatzeingang Stromregler

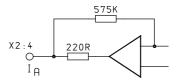
Eine Spannung von + 10 V an der Klemme X2: 5 bedeutet Gerätenennstrom.

Achtung!

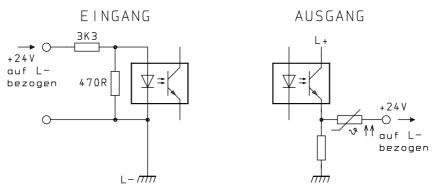

Dieser Zusatzsollwert addiert sich zum Hauptsollwert aus dem Drehzahlregler. Die Stromgrenze muss so niedrig eingestellt sein, dass die Summe der beiden Sollwerte maximal + 10V beträgt. Dieser Eingang hat eine sehr niedrige Filterzeitkonstante (2,2 ms) es ist also auf eine sehr saubere Spannung an Klemme X2: 5 zu achten.

6.2 Analoge Ausgänge

Sollwertintegrator


Der Ausgang ist durch ein Tiefpaßfilter und Pull-up Dioden vor rückwärtigen Störspannungen geschützt. Dadurch ergibt sich eine geringfügige Lastabhängigkeit, die aber bei konstanter Last (z. B. bei Verbindung mit den Sollwerteingängen X1: 3 oder 4) völlig unwichtig ist.

Stromistwert

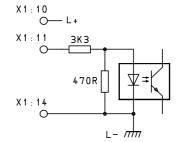

Bei Gerätenennstrom liegt hier eine Spannung von + 10 V an.

Ausgangswiderstand 220 Ohm.

6.3 Steuereingänge und Meldeausgänge

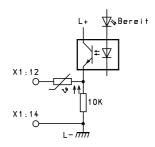
Ein- und Ausgänge sind durch Optokoppler vom Elektronikpotential getrennt. Sie haben ein eigenes 24 V-Netzteil, bezeichnet mit +L und -L.

Das Bezugspotential -L, Klemme X1: 14, ist mit dem Bezugspotential der Anlagensteuerung zu verbinden. Es wird empfohlen, auch diese Ein- und Ausgänge abgeschirmt zu verdrahten.



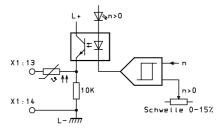
Gefahrenhinweis

Bei Ansteuerung der binären Steuer- und Wahleingänge über externe Spannungsquelle die nicht auf Gerätemasse bezogen ist (X1: 14 nicht mit X1: 5 oder 6 verbunden) darf der Potentialunterschied zwischen Gerätemasse und Masse der externen Spannung 50 V nicht überschreiten (Gefahr für Optokoppler).

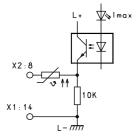

Eingang Reglerfreigabe

Reglerfreigabe bedeutet: Spannung +L auf die Klemme X1: 11 legen, oder eine Fremdspannung von +15 bis +30 V anlegen, deren Bezugspunkt mit -L (Klemme X1: 14) verbunden ist. Bei einer Spannung kleiner als +10 V ist der Regler sicher gesperrt. Bei gesperrtem Regler werden auch die Zündimpulse unterdrückt, der Antrieb driftet im Stillstand nicht, kann aber auch kein Moment aufbringen. Beim Ausschalten des Antriebes muss der Regler vor Abschalten des Hauptstroms gesperrt sein.

Meldeausgang "Betriebsbereit"

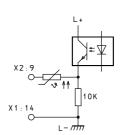

An der Klemme X1: 12 liegt die Spannung +L an, wenn die Elektronikversorgung und der Hauptstrom an den Klemmen X3: 1 + 2 + 3 eingeschaltet ist. Bei den Geräten mit Lüfter liegt ein Temperaturschalter zusätzlich in dieser Bereitmeldung. Bei einer Kühlkörpertemperatur von mehr als 85°C wird die Bereitmeldung weggenommen. Der Ausgang ist kurzschlußfest. Nachdem der Regler freigegeben ist, werden für die Störmeldungen "Netzüberwachung" und "Tachoüberwachung" Speicherbausteine gesetzt, die Meldung "Betriebsbereit" ist dauerhaft gelöscht. Die Speicher können durch den Taster S2 auf die Reglerplatine zurückgesetzt werden.

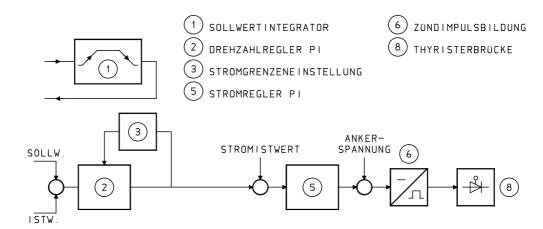
Meldeausgang n > o


An der Klemme X1: 13 liegt +L an, wenn der Antrieb schneller dreht, als es der am Poti n > 0 eingestellten Schwelle entspricht.

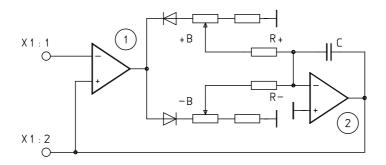
Die Meldung ist unabhängig von der Drehrichtung. Der Ausgang ist kurzschlußfest.

Meldeausgang "I max."

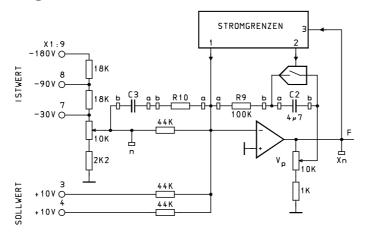

An der Klemme X2: 8 liegt +L an, wenn der Antrieb länger als 15 Sekunden an der eingestellten Stromgrenze betrieben wird. Der Ausgang ist kurzschlußfest.


Meldeausgang "Feldstrom vorhanden"

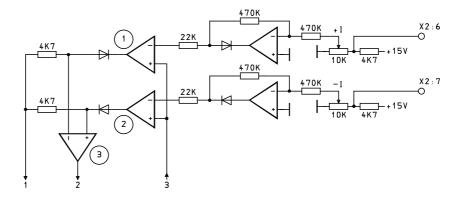
Dieser Ausgang ist nur relevant, wenn der im Gerät eingebaute Feldgleichrichter - Klemmen X3: 4+5/X4: 4+5 - benutzt wird.


An der Klemme X2: 9 liegt +L an, wenn der Feldstrom größer als 0,2 A ist. Bei den Geräten ab 380 A Feldstrom größer als 0,4 A. Diese Meldung wird nicht mit einer Leuchtdiode angezeigt. Der Ausgang ist kurzschlußfest.

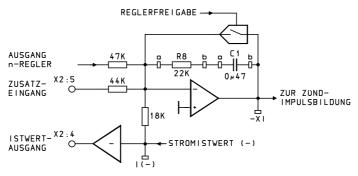
7 FUNKTIONSBESCHREIBUNG


7.1 Sollwertintegrator

Bei einem positivem Sollwertsprung an Klemme X1: 1 kippt der Komparator (1) ins Negative. Über den Widerstand R+ wird der Kondensator C aufgeladen. Die Geschwindigkeit der Aufladung ist von der Potistellung +B abhängig. Wenn die Ausgangsspannung am Integrator (2) die Höhe des Sollwertes an X1: 1 erreicht hat, kippt der Komparator (1) wieder auf 0 und der Kondensator C wird nicht weiter aufgeladen.


Bei negativem Sollwert gilt gleiches über Poti -B und Ladewiderstand R-. Wenn ein positiver Sollwert sprunghaft verkleinert wird, kippt der Komparator (1) ins Positive, die Entladung des Kondensators C erfolgt über Poti -B und Widerstand R-.

7.2 Drehzahlregler

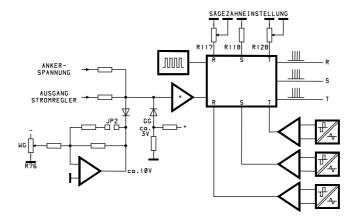

Der Drehzahlregler ist ein üblicher PI-Regler. Die Proportionalverstärkung wird durch R9 und Poti V_P die Nachstellzeit durch C2 bestimmt. Rechtsanschlag von Poti V_P bedeutet größte Verstärkung. Der Reglerausgang kann am Meßpunkt " X_n " gemessen werden. Durch C3 und R10 läßt sich der PI-Regler zu einem PID-Regler erweitern. Die aktuelle Drehzahl, auf Sollwertniveau normiert, läßt sich am Messpunkt "n" messen.

7.3 Stromgrenze

Über die Potis +I und -I werden die Komparatoren (1) und (2) zwischen 0 und 10 V vorgespannt. Komparator (1) ist auf positiv, Komparator (2) auf negativ gekippt. Übersteigt der Drehzahlreglerausgang (Punkt 3) die eingestellte Vorspannung, kippt der jeweilige Komparator um. Über die entsprechende Diode und den relativ niedrigen Widerstand 4K7 auf den Mischpunkt des Drehzahlreglers (Punkt 1) wird der Reglerausgang wieder zurückgenommen. Gleichzeitig wird der Komparator (3) positiv kippen und mit einem FET-Schalter den Kondensator C2 über den Drehzahlregler kurzschließen. Diese Schaltung ist für einen 4Q-Betrieb ausgelegt. Da die Gerätereihe GDE nur einen 1Q-Betrieb ermöglicht, wird das Poti -I auf Linksanschlag gedreht. Die Vorspannung von max. 10 V kann auch extern an den Klemmen X2: 6 angeschlossen werden (Eingangswiderstand 4K7).

7.4 Stromregler

Der Stromregler ist ein üblicher PI-Regler. Die Proportionalversträkung wird mit R8, die Nachstellzeit mit C1 bestimmt. Bei Benutzung des Zusatzeinganges X2: 5 ist zu beachten, dass sich beide Sollwerteingänge addieren. Die Summe darf nicht über + 10 V kommen. Der Stromreglerausgang kann am Meßpunkt -XI gemessen werden. An der Klemme X2: 4 liegt der Stromistwert, + 10 V bei Gerätenennstrom an. Die Spannung ist mit einer Zeitkonstante von 200 ms geglättet.

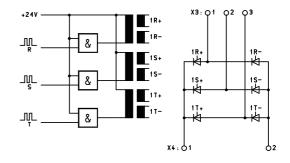

Die Stromistwertbildung erfolgt auf der Steuerplatine . Durch Vergrößern des Bürdenwiderstandes R161/R161.1 bzw. Umstecken der Jumper J3/J4 kann jeder Wert unterhalb des Gerätenennstromes begrenzt werden. Ein Verkleinern des Bürdenwiderstandes ist unzulässig.

Gefahrenhinweis

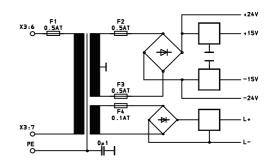
Bei Benutzung des Zusatzeinganges X2: 5 kann das Gerät und der Motor überlastet oder der Antrieb durch Hochlaufen Überdrehzahl erreichen. Die Stromgrenze wirkt nicht auf den Eingang X2: 5 ein.

7.5 Zündimpulsbildung

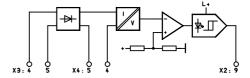
Der Ausgangsspannung des Stromreglers wird die momentane Ankerspannung zuaddiert. Damit wird der Stromregler entlastet und die Regelung dynamischer. Mit der Summe dieser beiden Spannungen wird der integrierte Zündimpuls-Baustein angesteuert. Die Zündimpulse haben eine Länge von ca. 1 ms und werden im 100 µs-Takt zerhackt.


Die Gleichrichtergrenze (GG) ist fest, die Wechselrichtergrenze (WG) ist werksseitig eingestellt und darf nicht verändert werden. Bei 60 Hz-Betrieb muss die Brücke JP2 auf der Steuerplatine gesteckt werden.

7.6 Thyristor-Endstufen


Die angewählte Stromrichtung +I aktiviert die zugehörigen Impulsübertrager und schaltet die UND-Gatter für die Zündimpulse frei.

Die Thyristoren benötigen einen Haltestrom von ca. 100 mA. Wird dieser Strom während der Zündphase nicht erreicht, sperrt der Thyristor nach Wegnahme des Zündimpulses wieder.

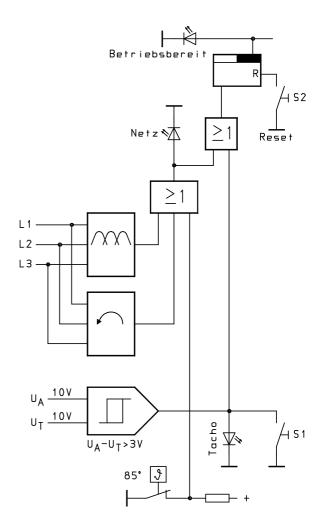

7.7 Elektronikversorgung

Zur Elektronikversorgung wird grundsätzlich ein Netz 230 V/50-60 Hz benötigt. ± 10% Toleranz ist zulässig. Es werden Kleinstsicherungen (TR5) mit träger Auslösecharakteristik verwendet. Die ± 15 V und L+ /Lsind mit Linearreglern stabilisiert. Die ± 24 V sind nur gesiebt.

7.8 Feldversorgung

Der Gleichrichter kann an maximal 400 V angeschlossen und mit maximal 7 A (ab GDE2/130 max. 15 A) belastet werden. Bei einem Strom größer als 0,2 A (bei den Geräten ab 130 A größer als 0,4 A) liegt am Meldeausgang X2: 9 das Potential +L an. Der Ausgang ist kurzschlußfest.

7.9 Netzüberwachung


Bei Linksdrehfeld oder Phasenausfall wird ein Störmeldespeicher gesetzt, die Regler und Zündimpulsbildung werden gesperrt. Die Meldung "Betriebsbereit" wird weggenommen und die rote Störmeldelampe "Netz" leuchtet. Der Meldespeicher wird zurückgesetzt, indem die Elektronikversorgung für mindestens 2 Sekunden abgeschaltet wird, oder der Reset-Taster S2 auf der Reglerplatine betätigt wird.

7.10 Tachoüberwachung

Die Tachoüberwachung und der geschlossene Ankerkreis werden überwacht, indem die Ankerspannung mit der auf 10 V normierten Tachospannung verglichen wird. Bei einer konstanten Felderregung verhält sich die Tachospannung direkt proportional zur Ankerspannung. Bei der Erstinbetriebnahme ist die Normierung 10 V Tachospannung = 100% Ankerspannung noch nicht erfolgt. Deshalb sollte das erste Einschalten nur mit einem Drehzahlsollwert von 1 V vorgenommen werden und der Drehzahlabgleich auf 10% der Maximaldrehzahl erfolgen. Wird die Tachoüberwachung nicht gewünscht, kann sie durch Schließen des Dipp-Fix-Schalters S1 auf der Reglerplatine ausgeschaltet werden. Wenn die normierte Tachospannung etwa 30% unter der Ankerspannung ist (100% U_A = 10 V) oder der Tacho falsch gepolt ist, wird der Störmeldespeicher (siehe Kapitel 7.9) gesetzt.

7.11 Lüfterüberwachung

Mit Ausnahme der 15 + 30 A-Geräte haben alle Geräte einen Lüfter zur Kühlung. Die Kühlkörpertemperatur wird bei diesen Geräten mit einem 85°-Bimetallschalter überwacht. Der betätigte (geöffnete) Schalter wirkt auf das Gerät wie das Ansprechen der Netzüberwachung (Kapitel 7.9).

8 INBETRIEBNAHME

8.1

Gefahrenhinweise

Beim Betrieb dieses Gerätes stehen zwangsläufig bestimmte Geräteteile unter gefährlicher Spannung, die zu schweren Körperverletzungen oder zum Tod führen können. Die folgenden Vorsichtsmaßnahmen sollten befolgt werden, um die Gefahr für das Leben bzw. Verletzungsgefahr zu verringern.

- Nur qualifiziertem Personal, dass mit diesem Gerät und den mitgelieferten Informationen vertraut ist, sollte die Montage, der Betrieb, die Störungssuche und Störungsbeseitigung oder Reparatur dieses Gerätes gestattet sein.
- Die Montage des Gerätes muss in Übereinstimmung mit den Sicherheitsvorschriften (z. B. DIN, VDE) sowie allen anderen relevanten staatlichen oder örtlichen Vorschriften erfolgen. Es muss für ordnungsgemäße Erdung, Leiterdimensionierung und entsprechenden Kurzschlußschutz gesorgt sein, um die Betriebssicherheit zu gewährleisten.
- Während des normalen Betriebes alle Abdeckungen und Türen geschlossen halten.
- 4. Vor der Durchführung von Sichtprüfungen und Wartungsarbeiten sicherstellen, dass die Wechselstromversorgung abgeschaltet und verriegelt ist. Sowohl das Stromrichtergerät als auch der Motor stehen vor dem Abschalten der Wechselstromversorgung unter gefährlicher Spannung. Auch wenn das Schütz des Stromrichtergerätes geöffnet ist, ist gefährliche Spannung vorhanden.
- Wenn Messungen bei eingeschalteter Stromversorgung durchgeführt werden müssen, keinesfalls die elektrischen Anschlussstellen berühren. Allen Schmuck von Handgelenken und Fingern abnehmen. Sicherstellen, dass die Prüfmittel in gutem betriebssicheren Zustand sind.
- 6. Bei Arbeiten am eingeschalteten Gerät auf isoliertem Untergrund stehen, also sicherstellen, dass keine Erdung vorliegt.
- 7. Die in dieser Betriebsanleitung gegebenen Anweisungen genau befolgen und alle Gefahren-, Warn- und Vorsichtshinweise beachten.
- 8. Diese Liste stellt keine vollständige Aufzählung aller für den sicheren Betrieb des Gerätes erforderlichen Maßnahmen dar. Sollten Sie weitere Informationen benötigen oder sollten spezielle Probleme auftreten, wenden Sie sich bitte an den Hersteller.

8.2 Empfohlene Vorgehensweise

Gefahrenhinweise

Bis zum Inbetriebnahmeschritt 4 darf keine Versorgungsspannnung auf das Gerät geschaltet werden. Bei Vorgabe der Reglerfreigabe läuft der Antrieb an!

- 1. Alle Hauptstrom-Schutzleiter- und Elektronikanschlüsse auf korrekte Verbindung prüfen. Sicherungen entsprechend 3.1 Gerätetabelle kontrollieren.
- 2. Mit Ohmmeter Anker-Anschluss (1 10 OHM) Feldanschluss (100 500 OHM) und Tacho-Anschluss (ca. 80 OHM) kontrollieren.
- Poti +I auf ca. 30%, alle anderen Potis auf Linksanschlag stellen.
 Anschluss Reglerfreigabe KI X1: 11 lösen.

 Sollwert (Klemme X1: 1 oder 3 oder 4) abklemmen und Handpoti an Klemme X2: 1 + 2. Schleifer an X1: 3 anschließen. Spannungsvorwahl Klemme X2: 1 mit Steckbrücke auf 10 V.

Die maximal zu erwartende Tachospannung ermitteln und kontrollieren, ob der richtige Istwerteingang benutzt wird. Voltmeter an diese Klemme anschließen.

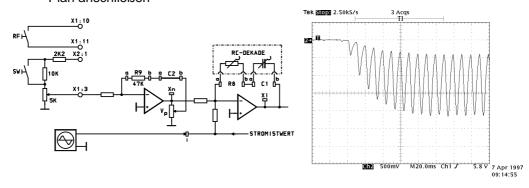
- 4. Gerät einschalten und Hauptstrom an Klemme X3: 1 + 2 + 3, Feldeinspeisung X3: 4 + 5, Elektronikversorgung X3: 6 + 7, Feldspannung X4: 4 + 5 messen. Sollwert mit Handpoti auf + 1 V stellen.
- 5. Den freien Draht "Reglerfreigabe" kurz auf Klemme X1: 11 tippen. Das Voltmeter am Istwerteingang muss negative Polarität zeigen. In diesem Fall kann der Draht fest angeklemmt und die Drehrichtung der Maschine kontrolliert werden. Bei falscher Drehrichtung Feld- und Tachoanschlüsse umpolen. War die Polarität der Drehzahl positiv, Tacho-Anschluss drehen, Regler wieder freigeben und Drehrichtung kontrollieren. Wenn keine Tachospannung angezeigt wurde, ist die Tachomaschine mechanisch nicht mit dem Antrieb gekuppelt oder der Antrieb benötigt mehr Anlaufstrom (+I steht auf 30 %), eventuell ist der Antrieb mechanisch blockiert.
- 6. Stromgrenzen auf Motornennstrom einstellen. Sollwertpoti auf +10 V stellen und Tachoüberwachung abschalten (S1). Drehzahlabgleich mit Spindeltrimmer "n" vornehmen. Die Ankerspannung darf dabei den Wert auf dem Typenschild des Motors nicht überschreiten, ggf. Feldstrom reduzieren. Nach erfolgtem Drehzahlabgleich Tachoüberwachung wieder aktivieren.

Gefahrenhinweis

Zu großes Überschwingen kann eine Überschreitung der zulässigen Ankerspannung zur Folge haben. Auch kann bei Sollwertsprüngen im Feldschwächbereich ein Überschwingen des Ankerstromes auftreten.

29

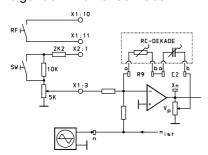
7. Handpoti abklemmen, Anlagensollwert auflegen und Not-Aus-Funktion mit Anlagensollwert testen.

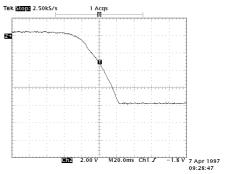

9 OPTIMIERUNG

Für die meisten Anwendungsfälle reicht die Standardbestückung der Strom- und Drehzahlregler völlig aus. Es ist allerdings ratsam, das Einschwingverhalten des Motors bei Sollwertsprüngen zu überprüfen und mit dem Poti V_P zu optimieren. Sollte ein kritischer Antrieb eine genauere Optimierung erfordern, empfiehlt es sich, nachdem der Antrieb in Betrieb genommen wurde, folgendermaßen vorzugehen.

Die Drehzahlregleroptimierung ist mit angekoppelter Maschine durchzuführen.

A) Stromregleroptimierung


 Poti für Stromsollwert und Schalter für Reglerfreigabe nach folgendem Plan anschließen



- 2. Drehzahlregler nach Plan beschalten. V_P-Poti auf Linksanschlag.
- 3. RC-Dekade nach Plan anschließen. Beginn mit der Standardbestückung. Oszilloscope an Meßpunkt "I" anschließen.
- 4. Feldversorgung abklemmen. Feldstromüberwachung überbrücken.
- 5. Antrieb einschalten, Regler freigeben. Mit Poti an Klemme 3 gerade nicht lückenden Strom einstellen. Mit dem Schalter SW Sollwertsprung vorgeben. Stromregler erst mit R8, dann mit C1 so optimieren, dass in etwa das Oszillogramm wie im Beispiel erscheint.

B) Drehzahlregleroptimierung

1. Poti für Drehzahlsollwert, Schalter für Reglerfreigabe und RC-Dekade nach folgendem Plan anschließen.

- 2. Feldversorgung anschließen. RC-Dekade auf Standardbestückung stellen, V_P-Poti auf Mittelstellung.
- 3. Antrieb einschalten, Regler freigeben. Etwa 30% der Maximaldrehzahl einstellen und mit dem Schalter SW Sollwertsprung vorgeben. Drehzahlregler erst mit R9, dann mit C2 so optimieren, dass in etwa das Oszillogramm wie im Beispiel erscheint. Insbesondere beim Beschleunigen oder Positionieren großer Massen kann das Einschwing-verhalten des Drehzahlreglers oft durch ein D-Glied R10/C3 verbessert werden. Richtwerte für die Dimensionierung sind etwa 22 K und 1µF.

10 STÖRUNGSFALL

Gefahrenhinweise

Beim Betrieb elektrischer Geräte stehen zwangsläufig bestimmte Teile dieser Geräte unter gefährlicher Spannung.

Kundenseitig kann an den Melderelais eine gefährliche Spannung anliegen.

Unsachgemäßer Umgang mit diesen Geräten kann deshalb zu Tod oder schweren Körperverletzungungen sowie erheblichen Sachschäden führen.

Beachten Sie daher bei Instandhaltungsmaßnahmen an diesem Gerät alle in diesem Kapitel und auf dem Produkt selbst aufgeführten Hinweise.

Die Instandhaltung des Gerätes darf nur durch entsprechend qualifiziertes Personal, dass sich zuvor mit allen in dieser Beschreibung enthaltenen Sicherheitshinweisen sowie Montage-, Betriebs- und Wartungsanweisungen vertraut gemacht hat, erfolgen.

Vor der Durchführung von Sichtprüfungen und Wartungsarbeiten sicherstellen, dass die Wechselstromversorgung abgeschaltet und verriegelt ist und das Gerät geerdet ist. Sowohl das Stromrichtergerät als auch der Motor stehen vor dem Abschalten der Wechselstromversorgung unter gefährlicher Spannung. Auch wenn das Schütz des Stromrichtergerätes geöffnet ist, ist gefährliche Spannung vorhanden.

Es dürfen nur vom Hersteller zugelassene Ersatzteile verwendet werden.

A) Hauptstromsicherung defekt.

Überprüfen der Thyristoren : Mit Ohmmeter an Klemmen X3: 1 + 2, X3: 2 + 3 und X3: 1 + 3 messen.

Widerstand muss über 40 K-Ohm liegen.

Messung von X3: 1 nach X4.1, danach X3: 2 nach X4.1 und X3: 3 nach X4.1, Widerstand muss über 100 K-Ohm liegen.

Messung von X3: 1 nach X4.2, danach X3: 2 nach X4.2 und X3: 3 nach X4.2, Widerstand muss über 100 K-Ohm liegen.

B) Antrieb dreht nicht. Voraussetzung:

Verdrahtung und Sicherungen sind in Ordnung. Antrieb einschalten - positiver Sollwert.

Leuchtdioden:

\otimes	Bereit	Ein	Aus	Ein	Ein	Ein	Aus	Aus
\otimes	Reglerfreigabe	Ein	Aus	Aus	Ein	Ein	Aus	Aus
\otimes	n > 0	Aus						
\otimes	Stromrichtung +	Ein	Aus	Aus	Ein	Ein	Ein	Ein
\otimes	Stromrichtung -	Aus						
\otimes	Stromgrenze	Aus	Aus	Aus	Aus	Ein	Aus	Aus
\otimes	Tacho	Aus	Aus	Aus	Aus	Aus	Aus	Ein
\otimes	Netz	Aus	Aus	Aus	Aus	Ein	Ein	Aus
	Fall	1	2	3	4	5	6	7

- Fall 1: Sollwert an Klemme X1: 3 oder 4 gegen Bezugspunkt X1: 5 oder 6 fehlt wahrscheinlich.
- Fall 2: Elektronikversorgung ± 15 V bzw. ± 10 V an Klemmen X2: 1 + 3 messen. Wenn nicht vorhanden Versorgung an X3: 6 + 7 und Feinsicherungen F1, F2, F3 auf der Versorgungsbaugruppe überprüfen..
- Fall 3: Reglerfreigabekommando fehlt. + 24V an Klemme X1: 11 gegen Bezugspunkt X1: 14 messen. Wenn nicht vorhanden Feinsicherung F4 auf der Versorgungsbaugruppe prüfen.
- Fall 4: Poti Stromgrenze +I ist auf Null gedreht.
- Fall 5: Poti Stromgrenze +I nicht weit genug aufgedreht. Ausgangsspannung an X4: 1 + 2 messen. Wenn vorhanden Ankerleitung unterbrochen.
- Fall 6: Phasenausfall, Drehfeld falsch, Haupt-Anschlussspannung an X3: 1 + 2 messen. Beim GEV2/40 Thermokontakt prüfen.
- Fall 7: normierter Tacho-Istwert 30% kleiner gegenüber normierter Ankerspannung, Tachozuleitung unterbrochen, Antrieb mechanisch blockiert.